(Chem 1H) Ch. 18 Notes – REDOX REACTIONS NOTE: Vocabulary terms are in <u>boldface and underlined</u>. Supporting details are in *italics*.

I. Oxidation and Redu	ction						
 A. Electron transfer and redox reactions 1) Oxidation and reduction occur together 							
"LEO GER" = <u>L</u> os	s of <u>E</u> lectrons is <u>O</u> xidat	ion. Gain of Electrons is R	eduction.				
OIL	$RIG = \underline{O}xidation is \underline{L}o$	ss. <u>R</u> eduction is <u>G</u> ain.					
a) <u>oxidation</u> b) <u>reduction</u> c) redox en compound) example	$\underline{on} - complete \text{ or partial}$ $\underline{on} - complete \text{ or partial}$ quations can involve mo nds, and polyatomic ion e equations with ions	loss of electrons $Cl^- \rightarrow Cl^-$ gain of electrons $Ag^+ + e^-$ natomic cations and anions s	$e^{1} + e^{-}$ $\rightarrow Ag$, molecular				
EXAMPLE 1) Show work t magnesium +	o identify what is oxidiz - copper(II) oxide \rightarrow ?	ed and what is reduced in the	he following equation:				
(activity series – p. 3 chapter 8 n	otes) Mg + CuO →	MgO + Cu					
	0 +2 -2 +	-2 -2 0					
Mg $0 \rightarrow +2$ (oxidized)	Cu $+2 \rightarrow 0$ (reduced) O is unchanged.					
EXAMPLE 2) Show work to identify what is oxidized and what is reduced in the following equation: sodium + chlorine \rightarrow ?							
Na + Cl ₂ \rightarrow	NaCl						
Na $0 \rightarrow +1$	(oxidized) Cl 0	\rightarrow -1 (reduced)					
 2) <u>oxidation n</u> a) ionic = b) uncomb c) uncomb 3) oxidizing ar a) <u>oxidizin</u> reduced b) <u>reducin</u> oxidized 	umbers – the basics (me charges ined solitary elements = ined allotropes of eleme ad reducing agents ag agent – a substance to in the process by accep ag agent – a substance to a s	ore on p. 3) 0 nts: C_{60} , S_8 , $Se_8 = 0$ that oxidizes another substating electron(s) that reduces another substational sing electron(s) e-	unce, becoming nce, becoming				
	x	Y					
	Reducing agent	Oxidizing agent					
	X loses electrons	Y gains electrons					

X is oxidized by Y (becomes more positive)

From ku.edu

Y is reduced by X (becomes more negative)

- B. Redox and electronegativity redox equations with molecular compounds
 - 1) in redox equations with molecular compounds, no ions are formed and no electrons are transferred
 - 2) use *electronegativity differences* to identify what is oxidized or reduced
 - 3) periodic trend: electronegativity increases toward fluorine
 - a) low electronegativity = lose e⁻ easily = oxidized = reducing agents
 - b) high electronegativity = gain e^{-} easily = reduced = oxidizing agents

$\Delta \text{ EN VALUES}$						
	$\begin{array}{c} 0.0 \\ 0.01 - 0.40 \\ 0.40 - 1.70 \end{array}$	nonpolar covalent (mostly) covalent polar covalent				
	> 1.70	(mostly) ionic				

H																	He
2.20		1															n.a.
Li	Be											В	С	Ν	0	F	Ne
0.98	1.57											2.04	2.55	3.04	3.44	3.98	n.a.
Na	Mg											Al	Si	Р	s	Cl	Ar
0.93	1.31											1.61	1.90	2.19	2.58	3.16	n.a.
к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.82	1.00	1.36	1.54	1.63	1.66	1.55	1.83	1.88	1.91	1.90	1.65	1.81	2.01	2.18	2.55	2.96	3.00
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
0.82	0.95	1.22	1.33	1.60	2.16	1.90	2.20	2.28	2.20	1.93	1.69	1.78	1.96	2.05	2.10	2.66	2.60
Cs	Ba	La	Hſ	Ta	w	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
0.79	0.89	1.10	1.30	1.50	2.36	1.90	2.20	2.20	2.28	2.54	2.00	1.62	2.33	2.02	2.00	2.20	n.a.
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	_	Uuq	_	_	_	_
0.70	0.89	1.10	n.a.		n.a.												

EXAMPLE 3) Show work to identify what is oxidized and what is reduced in the following equation: water \rightarrow hydrogen + oxygen

 $H_2O \rightarrow H_2 + O_2$

electronegativities: H = 2.20 and O = 3.44. Lower EN = oxidized (H). Higher EN = reduced (O).

C.	Determining oxidation numbers								
	1) uncombined solitary elements, "Super Seven," allotropes (such as C_{60} , S_8 , Se_8) = 0								
	2) monatomic ion = charge								
	3) in a molecule or polyatomic ion, the most electronegative element is assigned its								
	usual charge as if it were an independent ion								
	4) F is always -1 when bonded to a different element								
	5) O is always -2, except in the <i>peroxide ion</i> $(O_2)^{-2}$ it is -1								
	6) H is $+1$ unl	ess it is -1 in a metal hyd	ride (such as KH, potassium	n hydride)					
	7) Group 1 (L	A), Group 2 (IIA), and Al	= ionic charges						
	8) the total of	all oxidation numbers in	a neutral compound $= 0$						
	9) the total of	all oxidation numbers in	a polyatomic ion $=$ the char	ge for the 10n					
	10) examples								
	• ~ • ~ • ~ • ~ • ~ •	~ • ~ • ~ • ~ • ~ • ~ • ~ • ~ • ~ • ~	• ~ • ~ • ~ • ~ • ~ • ~ • ~ • ~ • ~ •	• ~ • ~ • ~ • ~ • ~ • ~					
EXAMPLE 4)	What is the or	kidation number of arseni	c in the arsenate ion?						
	$(AsO_4)^{-3}$	x + [(-2)x4] = -3	x - 8 = -3	x = +5					
~ • ~ • ~ • ~ •	• ~ • ~ • ~ • ~ • ~ •		• ~ • ~ • ~ • ~ • ~ • ~ • ~ • ~ • ~ •	• • • • • • • • • • •					
EXAMPLE 5) What is the oxidation number of carbon in sodium cyanide?									
	NaCN	(+1) + x + (-3) = 0	x - 2 = 0	x = +2					

- Balancing Redox Equations covered in AP Chemistry, for those who take itA. The oxidation-number methodB. Balancing net ionic redox equationsC. Balancing redox equations using half-reactions II.